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Abstract 
 
TTCN (Testing and Test Control Notation) is in the telecommunication domain a 
widely established and used test technology. In its new version, TTCN-3 has a wider 
scope and applicability. It cannot be used only for testing the conformance and inter-
operability of communication protocols but also the interaction of e.g. sensors, actua-
tors and control units connected via bus systems. Therefore, TTCN-3 is now being 
used in other domains such as automotive, railways, avionics and security systems. 
This paper gives an overview on TTCN-3, describes basic concepts and presents 
results on the application of TTCN-3 for testing MOST based components.  
 
 
1.  Introduction 
 
Car manufacturers face the problem of third-party components that need to adhere 
to OEM requirements and interface specifications and that need to behave function-
ally correct and with a sufficient performance and scalability. Component testing pro-
vides confidence and quality assurance to the OEM. However currently, it is hard to 
precisely define acceptance criteria for component deliveries as the artefacts used 
along this process are not integrated, give no a direct way to derive component ac-
ceptance tests from component requirements specifications, and do not allow to 
specify the test procedures being applied in the approval phase. The situation dete-
riorates with the increasing complexity and flexibility of today’s automobiles. New ap-
proaches for a systematic handling of automotive components address this problem 
by 
 

- defining automotive system/software architectures and platforms such as 
AutoSar [10] 

- extending process models towards a precise interface between third-party 
component vendor and OEM such as the W-model [11] or QDSD [12] 

- applying model-based techniques for the specification and testing of systems 
and components along MDA [13][16], UML [14] or U2TP [15]. 

 
This paper considers in particular the systematic testing of components of MOST [7] 
based applications. We use the only international standardized approach – the Test-
ing and Test Control Notation TTCN-3 [4] – due to its wide acceptance, applicability 
and available tool support. One of the advantages of TTCN-3 is the availability of 
both standardized open runtime and control interfaces (TRI and TCI) that enable an 
exchange of tool components between different test tool providers. We use the 
TTthree tool chain [6] because it is comprehensive w.r.t. management and logging 
facilities and has a good portability. 
The paper is structured as follows: TTCN-3 is introduced in Section 2. Since MOST 
messages and interfaces are defined in XML, Section 3 presents basic concepts of 
the combined use of XML and TTCN-3. Section 4 discusses the application of 
TTCN-3 to the testing of MOST components. An outlook completes the paper. 



 

 

2. The TTCN-3 Test Technology 
 
The TTCN-3 language was created due to the imperative necessity to have a univer-
sally understood (specification and implementation) language syntax able to describe 
test behaviours and test procedures. Its development was imposed by industry and 
science to obtain a single test notation for all black-box and grey-box testing needs. 
In contrast to earlier test technologies, TTCN-3 encourages the use of a common 
methodology and style which leads to a simpler maintenance of test suites and prod-
ucts. With the help of TTCN-3, the tester specifies the test suites at an abstract level 
and focuses on the test logic to check a test purpose itself rather than on the test 
system adaptation and execution details. A standardized language provides a lot of 
advantages to both test suite providers and users. Moreover, the use of a standard 
language reduces the costs for education and training, as a great amount of docu-
mentation, examples, and predefined test suites are available. It is obviously pre-
ferred to use always the same language for testing than learning different technolo-
gies for distinct testing kinds. Constant use and collaboration between TTCN-3 ven-
dors and users ensure a uniform maintenance and development of the language. 
TTCN-3 enables systematic, specification-based testing for various kinds of tests 
including e.g. functional, scalability, load, interoperability, robustness, regression, 
system and integration testing. TTCN-3 is a language to define test procedures to be 
used for black-box and grey-box testing of distributed systems. It allows an easy and 
efficient description of complex distributed test behaviours in terms of sequences, 
alternatives, and loops of stimuli and responses. The test system can use a number 
of test components to perform test procedures in parallel. TTCN-3 language is char-
acterized by a well-defined syntax and operational semantics, which allow a precise 
execution algorithm. The task of describing dynamic and concurrent configurations is 
easy to perform. The communication can be realized either synchronously or asyn-
chronously. To validate the data transmitted between the entities composing the test 
system, TTCN-3 supports definition of templates with a powerful matching mecha-
nism representing test data. To validate the described behaviours, a verdict handling 
mechanism is provided. The types and values can be either described directly in 
TTCN-3 or can be imported from other languages (e.g. ASN.1, XML schema, or IDL). 
Moreover in TTCN-3, the parameterization of types and values is allowed. The selec-
tion of the test cases to be executed can be either controlled by the user or can be 
described within the execution control construct. The external configuration of a test 
suite through module parameters is possible. 
Figure 1 shows an overview of the TTCN-3 language. The TTCN-3 meta-model de-
fines the concept space of TTCN-3 [4]. TTCN-3 has a core language for the textual 
definition and two other presentation formats, which allow the graphical and tabular 
definition of test artefacts. TTCN-3 provides interfaces to reference data defined in 
other description languages. As the figure shows, one can import types and values 
specified in ASN.1, but other formats are also supported (IDL, XML schema etc).  
 
 



 

 

 
 

Figure 1: The TTCN-3 Language Architecture 
 
The ETSI standard for TTCN-3 comprises currently seven parts (described below) 
which are grouped together in the “Methods for Testing and Specification; The Test-
ing and Test Control Notation version 3” document [3]: 
 

1. TTCN-3 Core Language. This document specifies the syntax of TTCN-3 lan-
guage. 

2. Tabular Presentation Format. TTCN-3 offers optional presentation formats. 
The tabular format is similar in appearance and functionality to earlier versions 
of TTCN. It was designed for users that prefer the TTCN-2 style of writing test 
suites. A TTCN-3 module is presented in the tabular format as a collection of 
tables.  

3. Graphical Presentation Format. It is the second presentation format of TTCN-
3 and is based on the MSC format (Message Sequence Charts). The graphi-
cal format is used to represent graphically the TTCN-3 behaviour definitions 
as a sequence of diagrams. 

4. Operational semantics. This document describes the meaning of TTCN-3 be-
haviour constructs and provides a state oriented view of the execution of a 
TTCN-3 module. 

5. The TTCN-3 Runtime Interface (TRI). A complete test system implementation 
requires also a platform specific adaptation layer. The TRI document contains 
the specification of a common API interface to adapt TTCN-3 test systems to 
SUT.  

6. The TTCN-3 Control Interfaces (TCI). This part provides an implementation 
guideline for the execution environments of TTCN-3. It contains the specifica-
tion of the API the TTCN-3 execution environments should implement in order 
to ensure the communication, management, component handling, external 
data control and logging. 

7. Use of ASN.1 in TTCN-3: This part provides guidelines and mappings rules 
for the combined use of ASN.1 (Abstract Syntax Notation One) and TTCN-
specifications 

 
Additional parts of the standards for the language mappings are currently under de-
velopment. 
 
 



 

 

2.1 The Concepts of TTCN-3 
 
The TTCN-3 core language is a modular language and has a similar look and feel to 
a typical programming language. In addition to the typical programming constructs, it 
contains all the important features necessary to specify test procedures and cam-
paigns for functional, conformance, interoperability, load and scalability tests like test 
verdicts, matching mechanisms to compare the reactions of the SUT with the ex-
pected range of values, timer handling, distributed test components, ability to specify 
encoding information, synchronous and asynchronous communication, and monitor-
ing. A TTCN-3 test specification consists of imports from other modules; types, test 
data and templates definition, function, altstep and test case definitions for test be-
haviour; and control definitions for the execution of test cases (see Fig. 2). 
Modules 

 
 

Figure 2: TTCN-3 Module Structure 
 

The top-level building-block of TTCN-3 is a module. A module contains all other 
TTCN-3 constructs, but cannot contain sub-modules. It can also import completely or 
partially the definitions of other modules. The modules are defined with the keyword 
module. The modules can be parameterized; parameters are sets of values that are 
supplied by the test environment at runtime. A parameter can be initialized with a 
default value.  
A TTCN-3 module has two parts: the module definition part and the module control 
part. The definition part contains the data defined by that module (functions, test 
cases, components, types, templates), which can be used everywhere in the module 
and can be imported from other modules. The control part is the main program of the 
module, which describes the execution sequence of the test cases or functions. It 
can access the verdicts delivered by test cases and, according to them, can decide 
the next steps of execution. The test behaviours in TTCN-3 are defined within func-
tions, altsteps and testcases. The control part of a module may call any testcase or 
function defined in the module to which it belongs.  
 
 
2.2  Test System 
 
A test case is executed by a test system. TTCN-3 allows the specification of dynamic 
and concurrent test systems. A test system consists of a set of interconnected test 
components with well-defined communication ports and an explicit test system inter-
face, which defines the boundaries of the test system. 
Within every test system, there is one Main Test Component (MTC). All other test 
components are called Parallel Test Components (PTCs). The MTC is created and 
started automatically at the beginning of each test case execution. A test case termi-
nates when the MTC terminates, which implies also the termination of all other 



 

 

PTCs. The behaviour of the MTC is specified in the body of the test case definition. 
During the execution of a test case, PTCs can be created, started and stopped dy-
namically. A test component may stop itself or can be stopped by another test com-
ponent. 
For communication purposes, each test component owns a set of local ports. Each 
port has an in- and an out-direction. The in-direction is modelled as an infinite FIFO 
queue, which stores the incoming information until it is processed by the test compo-
nent owning the port. The out-direction is directly linked to the communication part-
ner (another test component or the system under test (SUT)), i.e., outgoing informa-
tion is not buffered.  
During test execution, TTCN-3 distinguishes between connected and mapped ports. 
Connected ports are used for the communication with other test components. If two 
ports are connected, the in-direction of one port is linked to the out-direction of the 
other, and vice versa. A mapped port is used for the communication with the SUT. 
The mapping of a port owned by a test component to a port in the abstract test sys-
tem interface can be seen as pure name translation defining how communication 
streams should be referenced. TTCN-3 distinguishes between the abstract and the 
real test system interface. The abstract test system interface is modelled as a collec-
tion of ports that defines the abstract interface to the SUT. The real test system inter-
face is the application specific part of a TTCN-3-based test environment. It imple-
ments the real interface of the SUT and is defined in the TTCN-3 runtime interface 
(TRI, part 5 of TTCN-3).  
In TTCN-3, connections and mappings are created and destroyed dynamically at 
runtime. There are no restrictions on the number of connections and mappings a 
component may have. A component (and even a port) may be connected to itself. 
One-to-many connections are allowed, but TTCN-3 only supports one-to-one com-
munication, i.e., during test execution the communication partner has to be specified 
uniquely. For the communication among test components and between test compo-
nents and the SUT, TTCN-3 supports message-based and procedure-based com-
munication. Message-based communication is based on an asynchronous message 
exchange and the principle of procedure-based communication is to call procedures 
in remote entities. 
 
 
2.3  Test Cases and Test Verdicts 
 
Test cases define test behaviours which have to be executed to check whether the 
SUT passes the test or not. Like a module, a test case is considered to be a self-
contained and complete specification of a test procedure that checks a given test 
purpose. The result of a test case execution is a test verdict.  
TTCN-3 provides a special test verdict mechanism for the interpretation of test runs. 
This mechanism is implemented by a set of predefined verdicts, local and global test 
verdicts and operations for reading and setting local test verdicts. The predefined 
verdicts are pass, inconc, fail, error and none. They can be used for the judgment of 
complete and partial test runs. A pass verdict denotes that the SUT behaves accord-
ing to the test purpose, a fail indicates that the SUT violates its specification. An in-
conc (inconclusive) describes a situation where neither a pass nor a fail can be as-
signed. The verdict error indicates an error in the test devices. The verdict none is 
the initial value for local and global test verdicts, i.e., no other verdict has been as-
signed yet. During test execution, each test component maintains its own local test 



 

 

verdict. A local test verdict is an object that is instantiated automatically for each test 
component at the time of component creation. A test component can retrieve and set 
its local verdict. The verdict error is not allowed to be set by a test component. It is 
set automatically by the TTCN-3 run-time environment, if an error in the test equip-
ment occurs. When changing the value of a local test verdict, special overwriting 
rules are applied. The overwriting rules only allow that a test verdict becomes worse, 
e.g., a pass may change to inconc or fail, but a fail cannot change to a pass or in-
conc.  
In addition to the local test verdicts, the TTCN-3 run-time environment maintains a 
global test verdict for each test case. The global test verdict is not accessible for the 
test components. It is updated according to the overwriting rules when a test compo-
nent terminates. The final global test verdict is returned to the module control part 
when the test case terminates. 
 
 
2.4  Alternatives and Snapshots 
 
A special feature of the TTCN-3 semantics is the snapshot. Snapshots are related to 
the behaviour of components. They are needed for the branching of behaviour due 
to the occurrence of timeouts, the termination of test components and the reception 
of messages, procedure calls, procedure replies or exceptions. In TTCN-3, this 
branching is defined by means of alt statements. 
An alt statement describes an ordered set of alternatives, i.e., an ordered set of al-
ternative branches of behaviour. Each alternative has a guard. A guard consists of 
several preconditions, which may refer to the values of variables, the status of tim-
ers, the contents of port queues and the identifiers of components, ports and timers. 
The same precondition can be used in different guards. An alternative becomes ex-
ecutable, if the corresponding guard is fulfilled. If several alternatives are executable, 
the first executable alternative in the list of alternatives will be executed. If no alterna-
tive becomes executable, the alt statement will be executed again.  
The evaluation of several guards needs some time. During that time, preconditions 
may change dynamically. This will lead to inconsistent guard evaluations, if a pre-
condition is verified several times in different guards. TTCN-3 avoids this problem by 
using snapshots. Snapshots are partial module states, which include all information 
necessary for the evaluation of alt statements. A snapshot is taken, i.e., recorded, 
when entering an alternative. For the verification of preconditions, only the informa-
tion in the current snapshot is used. Thus, dynamic changes of preconditions do not 
influence the evaluation of guards. 
 
 
2.5  Default Handling 
 
In TTCN-3, defaults are used to handle communication events which may occur, but 
which do not contribute to the test objective. Default behaviour can be specified by 
altsteps and then activated as defaults. For each test component, the defaults, i.e., 
activated altsteps, are stored as a list. The defaults are listed in the order of their ac-
tivation. The TTCN-3 operations activate and deactivate operate on the list of de-
faults. An activate operation appends a new default to the end of the list and a deac-
tivate operation removes a default from that list.  



 

 

The default mechanism is invoked at the end of each alt statement, if the default list 
is not empty and if due to the current snapshot none of the alternatives is executa-
ble. The default mechanism invokes the first altstep in the list of defaults and waits 
for the result of its termination. The termination can be successful or unsuccessful. 
Unsuccessful means that none of the top alternatives of the altstep defining the de-
fault behaviour is executable, successful means that one of the top alternatives has 
been executed.  
In case of an unsuccessful termination, the default mechanism invokes the next de-
fault in the list. If the last default in the list has terminated unsuccessfully, the default 
mechanism will return to the alt statement, and indicates an unsuccessful default 
execution. Unsuccessful default execution causes the alt statement to be executed 
again. 
In case of a successful termination, the default may either stop the test component 
by means of a stop statement, or the main control flow of the test component will 
continue immediately after the alt statement from which the default mechanism was 
called or the test component will execute the alt statement again. The latter has to be 
specified explicitly by means of a repeat statement. If the selected top alternative of 
the default ends without a repeat statement the control flow of the test component 
will continue immediately after the alt statement. 
Altsteps are function-like descriptions for structuring component behaviour. TTCN-3 
uses altsteps to specify default behaviour or to structure the alternatives of an alt 
statement. The precise semantics of altsteps is closely related to alternatives and 
snapshots. Like an alt statement, an altstep defines an ordered set of alternatives, 
the so-called top alternatives. The difference is that no snapshot is taken when en-
tering an altstep. The evaluation of the top alternatives is based on an existing snap-
shot. An altstep is always called within an alt statement, which provides the required 
snapshot. Conceptually, the top alternatives of the altstep are inserted into the alter-
natives of the alt statement. Within the core language, the user can specify where 
the top alternatives shall be placed into the list of alternatives. It is also possible to 
call an altstep like a function. In this case, the altstep is interpreted like an alt state-
ment which only invokes the altstep, i.e., the top alternatives are the only alternatives 
of the alt statement. 
 
 
2.6  Communication Operations  
 
Communication operations are important for the specification of test behaviours. 
TTCN-3 supports message-based and procedure-based communication. The com-
munication operations can be grouped in two parts: stimuli, which send information 
to SUT and responses, which are used to describe the reaction of the SUT.  
Procedure-based communication is synchronous communication. Procedure-based 
operations defined in TTCN-3 are: 

- call: to invoke a remote procedure; 
- getcall: to specify that a test component accepts a call from the SUT; 
- reply: to reply value when an own procedure is called; 
- getreply: specifies that a method is invoked; 
- raise: to report an exception when an own procedure is called an something is 

wrong in the procedure call; 
- catch: to collect an exception reported at remote procedure invocation. 



 

 

Message-based communication is asynchronous communication. The sending op-
erations are non-blocking; after sending the data, the system does not wait for re-
sponse. The receive operations block the execution until a matching value is re-
ceived. A receiving operation specifies a port, at which the operation takes place, 
defines a matching part for selection of valid receiving values and optionally specifies 
an address to identify the connection if the port is connected to many ports.  
Message-based communication operations defined in TTCN-3 are: 

- send: send a message to SUT; 
- receive: receive a message from SUT; 
- trigger: specifies a message that shall receive in order to go to the next state-

ments. 
 
 
2.7 Test Data Specification 
 
A test system needs to exchange data with the SUT. The communication with the 
SUT can be either asynchronous, by sending/receiving messages to/from SUT or 
synchronous, by calling procedures of the SUT or accepting procedure calls from the 
SUT. In these cases, the test data must be described within the test system, accord-
ing to the SUT specification. TTCN-3 offers different constructs to describe the test 
data: types, templates, variables, procedure signatures etc. They can be used to ex-
press any type of protocol message, service primitive, procedure invocation or ex-
ception handling. Besides this, TTCN-3 offers also the possibility to import data de-
scribed in other languages (e.g. ASN.1, IDL, or XML schema). 
In order to describe basic data types, TTCN-3 provides a number of predefined 
types. Most of these types are similar to basic types of well-known programming lan-
guages (Java, C). Some of them are only testing domain specific: 

- Port types define the characteristics (message or procedure based, allowed 
data in the in and out direction) of ports used in the communication between 
test components and to the SUT.  

- Component types define the properties of test components such as their ports 
and local variables and timers. 

- The verdicttype is an enumeration which defines the possible verdicts that can 
be associated to a test case: pass, fail, inconc, error, none. 

- The anytype is a union of all known TTCN-3 types; the instances of anytype 
are used as a generic object which is evaluated when the value is known. 

- The default type is used for default handling and represents a reference to a 
default operation. 

TTCN-3 also supports ordered structured types such as record, record of, set, set of, 
enumerated and union. Furthermore, for procedure-based communication, TTCN-3 
offers the possibility to define procedure signatures. Signatures are characterized by 
name, optional list of parameters, optional return value and optional list of excep-
tions.  
Templates represent test data and are data structures used to define message pat-
terns for the data sent or received over ports. They are used either to describe dis-
tinct values that are to be transmitted over ports or to evaluate if a received value 
matches a template specification. Templates can be specified for any type or proce-
dure signature. They can be parameterized, extended or reused in other template 
definitions. The declaration of a template contains a set of possible values. When 



 

 

comparing a received message with a template, the message data shall match one 
of the possible values defined by the template. 
As not all details of TTCN-3 can be given here, please refer to the standard, further 
papers and tools to get a broader overview on the technology. 
 
 
3.  The XML to TTCN-3 Mapping 
 
As the need for communication has grown a lot in the last decades, also the need of 
structuring information has grown. Information needs to be structured in a standard 
manner for an easier way of creating, sending, reading, and reusing it. In 1996, XML 
(eXtensible Markup Language) was created by a group of SGML experts, sponsored 
by the World Wide Web Consortium (W3C9. In 1998, Version 1.0 of XML was ap-
proved by W3C and became a standard that nowadays is the base of a lot of service 
interfaces, data repositories and communication protocols. XML is a flexible tool for 
structuring data. Using XML, information from any vocabulary and in any structures 
can be restructured in an easy way. The base element in XML meta-language is the 
"tag". It is a kind of a label for the information that it encapsulates. XML language 
has a vocabulary, and also a grammar, given by the hierarchy of the tags. 
In the context of automated testing, it is necessary to reuse available data type defi-
nitions of the system under test (SUT) as much as possible in order to avoid any su-
perfluous re-definition of such data structures during test development. 
As illustrated in Figure 1, TTCN-3 allows the import of types and components from 
other languages, e.g. ASN.1, IDL [3] and now XML schema [2]. This import mecha-
nism makes TTCN-3 more flexible and extensible in the sense that test developers 
do not have to specify data types already available in other languages, but can refer-
ence and use them.  
 
 
3.1  The Mapping Rules  
 
In [1], a generic approach for XML to TTCN-3 has been developed. The main issues 
of this approach is the mapping of the XML built-in types to TTCN-3 types (e.g. 
decimal to TTCN-3 float), the consideration of XML facets (e.g. maxInclusive leads to 
TTCN-3 value restrictions), and the generation of structured TTCN-3 types from XML 
ComplexType specifications (e.g. choice is translated to TTCN-3 union).  
 
An auxiliary TTCN-3 module XSDAUX has been introduced for the mapping of all 
built-in types without facets to support short references within TTCN-3. This module 
represents also a base for the mapping of complex data types. An extract of 
XSDAUX.ttcn3 is given in the following: 
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The structure of the mapping follows the structure of the XML schema. At first, we 
handle built-in data types and afterwards the additional features that XML schema 
offers.  
Built-in data types are structured into primitive ones, and derived ones. The latter are 
derived from the primitive ones by means of restrictions, like: length, size, list, range 
etc. These restrictions are called facets. For every simpleType, primitive or derived, 
facets can be applied, and a new type will be available. So, for every built-in type 
there is a list of possible facets that can be applied to it, and depending on the facet, 
the mapping to TTCN-3 will be different. Every built-in type, without any facets, is 
mapped with its built-in name, in a module called XSDAUX. Whenever a new sim-
pleType is defined having as base type a built-in type, it is mapped using the dot no-
tation.  
 
Example: 
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After mapping the basic layer of XML schema, i.e. the built-in types, the mapping of 
the wrapping structures follows. For that, every structure that can appear, globally or 
not, will have a corresponding mapping to TTCN-3. 
SimpleType components are used to define new simple types by three means: re-
stricting a built-in type by applying a facet to it as discussed before, building lists or 
unions of other simple types. SimpleTypes can be defined globally, which means the 
parent is ”schema”, and the ”name” attribute is mandatory, and they will be mapped 
to a new TTCN-3 type using that name. Hence, they can be reused in other defini-
tions. Or, they are defined locally, i.e. the <name> attribute does not appear. Then, 
they are mapped by use of an automatically generated name, but they will not be 
reused in other definitions. Here, we give a small example: 
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becomes: 
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Figure 3: XML simple data type mapping 

 
Figure 3 gives the catalogue of XML build-in types that need a TTCN-3 representa-
tion. According to the target TTCN-3 representation, three groups have been distin-
guished: primitive, restricted and complex TTCN-3 types. 
The complexType is used for creating new types that contain other elements and 
attributes. This is in contrast with the simpleTypes that cannot contain attributes or 
elements. Just like simpleTypes, complexTypes can be defined globally, which 
means the possible parents are: <schema> and <redefine>. When they are defined 
globally, the "name" attribute is mandatory, so the new types will be mapped under 
the given value of that attribute. And they can be defined locally, in which case the 
name attribute cannot appear, they will be mapped using an automatic generated 
name, but they will not be used in other complexType definitions. In other words, 
they cannot be referenced from other definitions, as there purpose was locally. 
For the mapping, every child node is mapped separately to the corresponding 
TTCN-3 code. The children of complexType are: 

- annotation?, 
- simpleContent | complexContent 
- ((group | all | choice | sequence)?,((attribute | attributeGroup)*,anyAttribute?)) 

(where "?" means zero or one time, "*" means zero or many times and "," means 
"followed by"). 
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Figure 4: XSD complex data type mapping 

 
Figure 4 provides an overview on XSD simpleType and complexType structures to-
gether with samples TTCN-3 representations (e.g. sequence becomes record). As 
indicated, XSD facets become subtype definitions with length or list restrictions in 
TTCN-3 (e.g. maxExclusive). 
 
 
3.2  Implementation 
 
A prototype implementation is available that has been integrated into the commercial 
TTCN-3 compiler TTthree [6]. The translation from XML schema to TTCN-3 could 
have been a stand-alone tool, but since it is needed for import handling in TTCN-3 it 
has been directly included into TTthree. It supports both an implicit mapping of XML 
structures into an internal tree representation of the XML definitions and also the ex-
plicit translation into TTCN-3 core notation syntax by use of TTthree printing features 
in a second step. 
The mapping is divided into two parts: a first mapping translates XML schema to 
TDOM (Typed Document Object Module) structures and a second mapping trans-
lates TDOM structures to TTCN-3 structures. The first mapping is realized with a 
XML schema, the second one uses a Syntax2Template generator. The TTthree tool 
is a Java application that comes with its own Java Runtime Environment (JRE 1.3.1) 
and Java compiler (IBM's Java compiler Jikes v. 1.16). 
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Figure 5: Integration into TTCN-3 compiler 

 
Figure 5 illustrates the sequence of tool applications used for translating an XSD 
module to a TTCN-3 specification. 
 
 
4.  The Use of TTCN-3 for Testing MOST Applications 
 
This section describes an application of TTCN-3 and its combined use with XML to 
the systematic testing of MOST applications. 
 
 
4.1  Description of MOST 
 
MOST stands for “Media Oriented Systems Transport” and defines an accepted set 
of standards [7] for automobile networking. The standards itself are developed by a 
cooperation of European car makers. 
Communication in a MOST-based system is done between MOST devices, e.g. am-
plifier, phone, or tuner, following a message-based approach. MOST devices ex-
change messages by emission of light on the network, which is physically con-
structed by connecting MOST devices in a ring topology using fibre optic cable.  
Transport modes include asynchronous transmission of control commands or gen-
eral packet based data, there is also a mechanism for bandwidth reservation, ena-
bling devices to synchronously transfer larger amounts of real time data (e.g. video 
or audio data).  
All devices on the MOST bus are provided with unique addresses (Device-Address) 
during start-up of the network. This information is made available in a central regis-
try, enabling arbitrary communication between devices on the bus. A device can im-
plement combined functionality, for example a car’s head unit or a combined CD 
player, tuner and amplifier. Therefore functions are logically grouped in so called 
function blocks. To distinguish between the function blocks of a device every function 
block has a distinctive identifier (FBlockID). The same is valid for functions (FktID). 
 



 

 

 
 

Figure 6: MOST Function Block 
 
Functions are classified either as methods or properties:  
 
- Functions that can be started and which lead to a result after a definable period 

of time are called “methods”. 
- Functions for determining or changing the status of a device are called “proper-

ties”.  
 
Additionally, if properties are requested to report changes, they will emit events using 
the notification service capabilities of the ring network. When accessing functions, 
different operations can be used. The type of an operation is specified by an identi-
fier (OPType) defining how the method or property should be accessed, e.g. SET or 
GET. There are operations for storing and retrieving properties, for incrementing and 
decrementing properties, querying the status of a property, starting and aborting 
methods or for retrieval of interface information about a certain function. In addition, 
an operation may transmit sender information by using a different OPType, e.g. all 
OPTypes names that are post fixed with “Ack”. If abstracting from transport level 
mechanisms, a message on the application layer can be described as a 4-tuple 
(FBlockID, FktID, OpType, Parameter), where Parameter contains all arguments 
used when accessing the function, e.g. a new volume setting when sending a mes-
sage to an amplifier device. Obviously only a subset of combinations of the tuple’s 
elements is valid. These combinations have been explicitly specified by the MOST 
cooperation in a set of specifications known as the “Function Catalogue”. 
 
 
4.2  The MOST Function Catalogue 
 
MOST devices are independent components and manufactured by different compo-
nent suppliers, therefore communication between the various components has to be 
explicitly specified and verified. The catalogue currently defines several basic Func-
tion Blocks, e.g. GeneralFBlock, NetworkMaster, AudioAmplifier or Telephone, and 
will be augmented by further definitions as new products and technologies will be-
come available. Apart from the human-readable specification in PDF format, the 
catalogue also exists in a machine-readable XML format, including a DTD (Docu-
ment Type Definition) describing its composition. An automatic translation from DTD 
to XML schema is feasible, as XML schema offers a more powerful and flexible ap-
proach to describe XML content than DTD does. When converting the Function 
Catalogue DTD to XML schema a document structure, like the one shown in figure 6, 
emerges.  



 

 

Figure 6: Extract of the upper four nesting levels of the Function Catalogue structure 
 

The diagram can be read as follows: A FunctionCatalog element contains a se-
quence of: Exactly one CatalogVersion element followed by an optional amount of 
FBlock elements and concluded by exactly one Definition element. A dashed line 
signals optional components and a + at the rear end of a box shows that further con-
tent follows the element in question. References are labelled as arrows in the bot-
tom-left corner of an element.  
The resulting structure is deeply nested: To navigate from a certain FBlock to the 
OPType of one of its function’s (which are hidden within the FunctionClass structure) 
takes following more than ten references and processing of sequences, respectively. 
Of course, when importing the catalogue’s XML schema this is reflected in the result-
ing TTCN-3 code, leading – from a programmer’s perspective – to cumbersome and 
hard to use constructs.  
 
 
4.3  Using the catalogue as a basis for testing 
 
To make use of the benefits of integrating TTCN-3 with the Function Catalogue 
structures, the XML schema had to be adapted to the requirements of testing. This 
can be done by pre-processing The XML schema using five steps to simplify the 
catalogue without breaking the specification. 
In a first step, the XML schema data is stripped from futile ballast. For example, 
when observing figure 6 it’s noticeable that the CatalogVersion element contains 
useless information1, so it can be removed. Other elements to strip from the XML 
schema data include descriptions and version information in general. The Definition 
element cannot be stripped, as it contains information used by other elements, but it 

                                            
1 In another context this information might be of great importance  



 

 

can be integrated directly with the using elements in step five. As FBlock is the only 
element left in FunctionCatalog, it’s parent element can be removed, as well. 
The second step unifies elements. Within the catalogue many elements only differ by 
a prefix to their names, but not by type or structure. This might a good decision for 
extensibility of the catalogue, but is not useful with testing. For example take the ele-
ments in figure 7: Both PECommand and PACommand can easily be unified to a 
type PCommand.  

 
Figure 7: Two elements that can be unified 

 
The third step decides for each element if it should be global, and therefore referen-
cable by others, or if it should be nested within another element. We use three crite-
ria to judge this: 
 

1. The number of attributes of an element 
2. The number of children of an element 
3. The number of references pointing to this element 

 
These general criteria can be adapted to the input XML schema’s structure. With the 
MOST Function Catalogue, we declare an element local if it has no more than one 
attribute, no child elements and is only referenced once. This integrates only very 
simple types with the more complex ones. 
The fourth step simplifies structures by mapping them to basic XML schema types, 
for example the type TSLong can be replaced with its counterpart xs:long. This step 
is necessary as DTDs do not have a proper type system and therefore model every-
thing with names, structures and the two CDATA and PCDATA2 types. 
In the last step structural transformations are executed on the XML schema docu-
ment. For example replacing elements with attributes (see FBlockID in figure 6: This 
element can be translated to an attribute of element FBlock) or combining multiple 
elements in a single one.  
After pre-processing, the XML schema is more lightweight, less nested and inte-
grates better with TTCN-3 code. Consider the following fragment from an 
AmFmTuner function block: 
�
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2 PCDATA is short for “parsed character data” and denominates the text between a start and end tag of 
an element. 
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�
This defines a message to set the notification property of a MOST radio device. The 
first three entries define the FBlockID, FktID and OpType, where the last three en-
tries define the Parameter. 
 
 
5.  Outlook 
 
The test technologies and the tools described in this paper have been successfully 
used to test the integration of cockpit components.  
The case study showed that extensions of the XML to TTCN-3 mapping are useful. 
As of now, only types can be brought from XML into the TTCN-3 world: our current 
research in this area focuses on how to generate templates from the instance data 
contained in the (much bigger) part of MOST Function Catalogue. We are trying to 
find a method that automatically extracts the data and fills in the generated message 
structures. If this is finished, a convenient and powerful way exists to test MOST sys-
tems using standard TTCN-3 testing environments. 
In addition based on this case study, we anticipate that neither generic nor specific 
extensions to the core language will be required to adequately describe the tests for 
MOST applications except of their real-time aspects.  
We will continue to work on the application of TTCN-3 in the automotive domain to 
test e.g. also CAN-based components.  
�
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